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Abstract The prohkm 01" d penny-shaped crac~ III hl'llwgeneO\h diSSimilar matenals bonded
through an interl"aCial region with graded mechafllcal prl1pcrtlcs IS wnsidered. The applied loads
are assumed to he axisvmmetnc but otherwise arbitran The shear nwdulus of the interhlCial regIOn
is assumed to be 11.(:1 = !"exp(::c) and that 01" the a~lherents!. and ii, == II,CXp(:xIi), Ii being the
thickness of the region A crack of radius a IS IO"lI"d at the: II plane. The axisymmetric mode
III torsion problem is separated and treated elsewhere Heeausl' 01" material nonhomogeneity. the
deformation modes I and II considered III this study Me alway s coupled. The related mixed boundary
value problem is reduced to a system 01" singular InlL"gral eLJ uations The asymptotic behavior of the
stress state near the crack tIp IS examllled. and the Intluenee \11" the thickness ratio Ii a and the
material nonhomogeneIty parameter :x on the stress mtensllv I"adors and the strain energy release
rate is investigated. The results show that the stress slale ncar the crack tip would always have
standard sLJuare-root singulanty provided Ii > (I or the matenal properties are continuous but not
necessarily diffcrentiabk I"unctions 1)1":

I INTRODl (11\)]\.

In studying the fracturc mechamcs of bonded m,llcnals the structure and thickness of the
interfacial regions seem to play an important role 111 dCkrmining thc crack growth resistance
parameters as well as the crack driving force Very often. however, in such studies the
interfacial rcgion is simply neglected and the mcdlum is assumed to be piecewise homo­
geneous. This typc of simplified material model IS gencrally adcquate if the interfacial zone
thickness is very small relative to the crack length and other macroscopic dimensions. and
if the purpose is to evaluate. for example. the strain cnergy release rate as the measure of
crack driving force [for review and references sec SLto and Hutchinson (1990) and Rice et
at. (1990)]. The model may be improved by aSSLlm1Jlg that the interfacial region consists of
a relatively thin homogeneous layer with malenal properties different than that of the
adjacent materials and the debonding crack is either cmbedded III the interfacial layer or
lies along one of interfaces [see Arin and Erdogan [" 1971). Erdogan and Gupta (1971a. b),
and Erdogan and Arin (1972) for bonded isotroplc materials. and Erdogan and Wu (1993)
for collinear interface cracks in orthotropic ma lenals bonded through an orthotropic
layer]. In using this particular homogeneous interlaciallOne model ror studying debonding
fracture. even though such calculated fracture-rclated quanlllies as strain energy release
rate, stress intensity factors and crack opening displacements are heavily influenced by the
properties and the thickness of the interfaciallaycr. conccptually the related crack problems
are the same as that of conventional cmbedded Ollnll'rlacc cracks in piecewise homogeneous
materials.

Recent studies. however. seem to indlcatc thaI largely as a consequence of material
processing, in many cases the thermomechal1lcal properties or the interfacial region vary
continuously in thickness direction. resulting In a htghly nonhomogeneous layer between
two homogeneous materials. Electron microprobe line scans and scanning Auger depth
profiles indeed sho\\ that in some diffusion bonded materials atomic composition of the
two materials varies continuously across the nom [" na I ["nterface (Shiau et at.. 1988; Brennan,
1991). Similarly, during some deposition pmcesses, as a consequence of sputtcring there is
a certain amount of mixing of the two species. gt\ I11g agal11 an intcrfacial region with steeply
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Fig. The geometry of the problem for two dissimilar homogeneous materials bonded through a
nonhomogeneous interfacial zone

graded properties (Batakis and Vogan, 1985; Houck et al., 1987). There is also the new
class of materials called 'Functionally Gradient Materials' (FGMs), used largely as coatings
and interfacial zones, in which the material properties are intentionally graded. These are
essentially two phase (e.g. metal/ceramic) nanocomposites synthesized in such a way that
the volume fractions of the constituents vary continuously in thickness direction to give a
predetermined composition profile [see Yamanouchi et al. (1990) and Holt et ai, (1993) for
extensive review and references]. FGM coatings and interfacial zones, designed mostly for
high temperature applications, seem to be quite effective in reducing residual stresses
resulting from processing (Lee and Erdogan, 1994) and in enhancing the bonding strength
(Kerrihara ct al., 1990).

Fracture mechanics studies of bonded materials require the solution ofcertain standard
crack problems. With the exception of two homogeneous half spaces bonded through an
FGM layer containing a penny-shaped interface crack and subjected to torsion (Ozturk
and Erdogan. 1995). the solution of few interface crack problems that exist in literature has
been obtained under the assumption of plane strain (Delale and Erdogan, 1988a, b) or
antiplane shear loading (Erdogan and Ozturk. 1992; Ozturk and Erdogan, 1993). In this
study we consider the axisymmetric problem of two dissimilar elastic homogeneous half
spaces bonded through a nonhomogeneous interfacial zone. Referring to Fig. 1, it is
assumed that the composite medium contains a penny-shaped crack on one of the interfaces,
the related mode II I or the torsion problem has been uncoupled, and by separating the
solution of the uncracked medium under given applied loads, the remaining coupled mode
I mode I I problem is reduced to a perturbation problem in which the crack surface tractions
(Jcc and (J,: are the only nonzero external loads.

2. FORrvtuLATlO"l OF THE PROBLEM

The axisymmetric crack problem for the composite medium which consists of two
homogeneous materials bonded through a nonhomogeneous interfacial region is described
in Fig. 1. For each one of the constituents I. 2 and 3 shown in Fig. 1, the kinematic
relations, the Hooke's law and, in the absence of body forces, the equilibrium equations
for the elasrostatic problem may be expressed as follows:
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(3a,b)

where in the usual notation i" and 11, are Lame's constants, u, is the radial, w; the axial
component of the displacement vector, and /;,," and (J'lk' respectively, refer to strains and
stresses in the medium, i = (1,2,3), (j, k) = (r, fI, z), In this study it is assumed that the
Poisson's ratio of the composite medium is constant (i,e, VI = V2 = V3 = v) and the shear
modulus 112 is approximated by

I
11:(z) = III e"', 'Y. = II log (11,/111)' (4)

where h is the thickness of the interfacial layer and, depending on the relative magnitudes
of III and 113' the constant'Y. may be positive or negative, Even though it is based largely on
mathematical expediency the foregoing assumption is not altogether unrealistic. The pre­
vious results as well as those obtained in this article indeed seem to show that in problems
involving practical materials the influence of the Poisson's ratio on, for example, the stress
intensity factors is rather insignificant (Delale and Erdogan, 1983; Konda and Erdogan,
1994), Also exp (:xz) is a convenient function to express steep material property variations
in the interfacial zone in a simple manner. Furthermore, an exponentially varying modulus
is quite adequate to study the basic features of the problem near the tip of a crack lying
along a kink line of the material property distribution (Fig, I),

Defining now I( = 3 - 4v and substituting from eqns (I) and (2) into (3) we obtain

(e: H, I
IT (

(I( -, I) (?u (c H") i I'U U ')' ow
--- --..-' -~--' +(3-1()'Y.1 _,' + r' +(1(+ I):x -"z' = 0,

r I'Z tr ' \ I'/' U
, / '

('Y. = 0 for i = 1,3; :x '* 0 for i = 2). (Sa,b)

Equations (5) must be solved under the followlOg continuity, boundary and regularity
conditions:
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Z = h, (6)

We now assume the solution of eqn (5) in the form

~ ,
u,(r,z) = J Fi(z,p)pJ] (rp) dp,

(J

H',(r,z) = r' G,(Z, p)pJo(rp) dp, (i=I,2,3)J,

(7)

(8)

(9)

(10)

(11)

(12a,b)

where Jo and 1, are the Bessel functions of the first kind. Substituting from eqn (12) into
(5), defining D = d/dz, and inverting the related Hankel transforms we find

[(K - I)D 2 + ct(K - I )D· (K + I )p2} F, - {2pD +Xp(K -I)} G, = 0,

r2pD+x(3 - K)p )Fi + {(K+ I )D 2 + X(K+ I )D- (K-I)p2}G, = 0,

(:x=O. for i=I,3; ct-:j.O, for i=2). (13a,b)

The solution of differential equations (13) may be expressed as

4

F2 (z, p) = I Ak + 2 (p) e""c,
k~1

4

G2 (z, p) = I Bk+2(P) e""C,
k~'

(14a,b)

with different sets of A" Bk and nlk for each medium, where Ak and Bk are unknown
coefficients and m l , .. ,m4 are the roots of the following characteristic equation:

4 • , " , 3-K 2 7 4
m +2xm"+(x"-2p-)nr-2p"xm+--ap-+p =0.

K+I
(15)
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From eqns (\3) and (14) it can be shown that

lpm, + p:x(3 - hI
------~-------

(I\: + 1)m; +:X(I\:+ I)m, -- (h - 1)pC

The characteristic equation (14) may easily be expressed as

(k = L ... ,4).

197

(16)

(17)

from which it follows that

:x 1 {_ _. /3 - K }I 2
fI1 l =m,=--+- :X'+p'+14/---:xp

2 2 \)1\:+1

(18)

(l9a,b)

where bars refer to complex conjugates. After solving for m I' .. , m4 , the expressions for
coefficients Ch given by egn (17) may be simplified as follows:

(20a-c)

The foregoing derivation is for the nonhomogeneous material 2. For the homogeneous
materials 1 and 3. by substituting :x = 0 in egn (13), it may be shown that

F(p.:) = (Ail +:A i2 ) e"c + (A" +:A i4 )e

G,(p,:) = (Bil+:Bi2)e,c+(B,,+:Bi4)e P' (i= 1,3),

Using the regularity conditions (11 I and defining the following new unknowns

(2la,b)

(22a--d)

.4 (23a--d)

from egns (21) and (22) It follows that
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(24)

(25)

By substituting now from egns () 4), (24) and (25) back into (12) and by using (2), the
displacements and the relevant components of stresses may then be expressed as follows:

Uj(r,z) = fT (AI +zA2)el'~pJ,(rp)dp,
o

(26a,b)

ref. 4

U2(r,Z) = I LAk+2emk~pJj(rp)dp,
.0 k~1

(27a,b)

u,(r,z) = f' (A7+zAde-p~pJ,(rp)dp,
II

(28a,b)

I fX
- (J I~, = {- 2pA 1+ [K + 1- 2pz]A 2} ePzpJo(rp) dp,
III 0

(29a,b)

(30a,b)

(31a,b)

The functions A I ' •.• , A H are determined from the boundary and the continuity conditions
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of the problem. Equations (6)-(8) give the following six homogeneous algebraic equations
in Ak :

4

L e""hAk+c- e i'h(A 7 +hA R ) = 0.
k~1

4

I nk e""h Ak + 2 -e-!lh(K-IH ~ 2pA, - (K+ 1+ 2ph)Ag) = 0,
k~1

A

I {k em,hAk + 2 _e~ph( -2pA 7 + (J - h-- 2ph)Ad = O.
k~1

4

L nkAk+c = (K-I)[-2pA 1+(h+l)A cJ.
k=1

4

L hAh2 = 2pA I -(K-I)A>
k=1

where

Solving for A), .... Ax. from eqns (32) it can be shown that

A, = (£4LI +£O[I),,{I +(l:'4 L c+ E,,[:L4>

A4 = L1,,{1 +L2 ,,1;. .4,.", ,4, . .4" = A4 ,

A7 = ±[1+P~(I-i1,)le(""'jlhAk'>
k ~ 1 K J

(32a-f)

(33a,b)

(34a-f)

where the expressions for £4, £0' L 1 and L c are given in Appendix A, Lk , Ak + c are the
complex conjugates of Lk , Ak + 2, (k = 1, 2) and

(35)

The unknowns A 1 and A 2 may now be determIned from the mixed boundary conditions
(9) and (10).

3. THE DERIVATION OF INTEGRAL EQUATIONS

To reduce the mixed boundary conditions (9) and (J 0) to a system of integral equations
we first define the following new unknown functions:

(36a,b)

From eqns (27), (28) and (30) it then follows that
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gl (r) = f' [( - I - 2pZIlpA I + (/\ - (/\ - I )pZ2)A2]pJI (rp) dp,
Jo

92(r) = (' [(-1+2p}l)pA I +(K-I)pY2A 2]pJo(rp)dp,
Jo

(37a,b)

where the functions Zi' Y" (i = 1, 2) are defined in Appendix A. By taking the inverse
transform of (37) and solving the resulting equations for A I and A 2 in terms of the new
unknown functions 91 and 92 and observing that gk = 0, (k = 1,2), for r > a, the functions
A I and A 2 are found to be

(K-I)p Y2(p) fa K- (K-l)pZ 2(p) fa
pAl = --6---'- sg\(s)JI(sp)ds- ..... 6 ( ) s92(s)Jo(sp)ds.

,(p) 0 3 P 0

where

2PY I (P)-li" (1+2PZ 1(P»i"
A 2 = - ._~(-- ,1'91 (S)J I (Sp) ds- A ( ) Sg2(S)JO(Sp) ds,

Ll,p) 0 Ll,P 0
(38a,b)

Up to this point all conditions of the problem except (9) have been used. Thus, by
substituting from eqn (38) into (30), the conditions (9) may be expressed as

0:( r < a,

where

~y I

I P2(p)pJI(rp)dp=--p2(r), O:(r<a,
,,0 J11

Pdp) = dll (p) [' SYI (I)J I (sp) ds+ d I2 (P) ra

Sg2(S)JO(sp) ds,
~l) Jo

P 2(p) = d21 (p) r' .1'91 (s)J I (sp) ds+dn{p) fa '% (s)Jo(sp) ds,
Jo Jo

(40a,b)

(4Ia,b)

and the functions d,/(p), (i,j = 1,2) are also defined in Appendix A.
In order to avoid working with divergent kernels and to simplify the analysis regarding

the asymptotic behavior of the kernels, first both sides of (40) are integrated in r. By using
eqns (41) it may then be shown that

(42a,b)
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where C and (\ are arbitrary constants. Equations (42) are essentially the integral equa­
tions that determine gl and g2' For p ...... x it can be shown that the functions du(p) have
the following asymptotic behavior:

2 I ('1.
1\+1 - 2(1\+1) I') (43a-d)

Thus. from eqns (42) dnd (-D) it may be sho\\n that

where

(44a,b)

HII(,.,I) =

I]
I [K(s r) _. E(s)r)]., \

.I (rplJ I (sp) dp =
n 1

[K(,. s) - E(r)s)],
r

s < r,

s > r,

(45)

(( ,
H,:(r.s) = I .I,,(rp).IoUp)dp = -

'" 1/ Tt

('f

I
K(sr).

r

I
K(r s).

.1
\.

s < r,

s > r,

(46)

h 1(".01) = I D II (p).J
1
(.lp)}1 (rp) dp.

~II

~ ,

hl,(".s) = j D I2 (plJ"lsp)J I (rp)dp .
• II

h21 (r.s) = I" D 21 (PIJ,(sp).1,,(rp)dp.
~ (I

h 22 (r ..l) = I" D'2(p).J,,(.lp).Io(rp)dp.
",.·l)

(47a-d)
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D ,( ) = d22 (p) - 1
'c P d

22
( (0) , (48a-d)

(49a,b)

and K and E are, respectively, the complete elliptic integrals of the first and second kind
defined by

f
n, de

K(k) = -- -- ,
o (l-k2 sin'II)[ ,

E(k) = j'n, (l-k 2 sin2 (J)li 2 de, 0 ~ k ~ 1.
o

(50)

If equations (44) are differentiated term by term in r, the integral equations may be reduced
to the following standard form:

I fa ( I I) I!'" , K + I- -----+-.-- Ydl)d.l-r- I I. ml;(r,s)gj(s)ds=--Pl(r),
IT 0 .I' - r ~ + r IT ." I_ I 2pl

I fa ( I I) I J'" , K + I--- - -- g2(S) ds+ I m2,(r, s)g;(s) ds = -2-P2(r),
IT 0 s-r s+r IT 0,'] PI

where the Fredholm kernels mil are given by

M[(r,s)-l M,(r,s)-I if.
mil (r, s) = ------ -+- + - + ITS D 11 (p)pJo(rp)J I (sp) dp,

s-r s r 0

ml,(r, .1') = ns fa' D!2lp)pJ,,(rp)J,,(sp) dp,

m21 (r,S) = -nsJ" D 21 (p)pJ,(rp)J , (sp)dp,
o

(5Ia,b)

r £(.1'\) + .1'2 r
2
K(~), s < r,

.I' r rs r
/

f'C} s> r.

SE(·~·). \<r,
r r

/

M 2 (r,s) =

.1' £(r·.·.)_ s: ..~r2 K(~) s > r.
r~ s I r'2 s '

(53a,b)

From eqns (51) it may be seen that the dominant kernels of the integral equations are
of the generalized Cauchy type (Erdogan. 1978). Thus by expressing the solution in the
form
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q,(I) =
(0 -1)'1,.1""'

-1~Rcl/l.II"<1. (f.:.=1.2), (54)

and using the function theoretic method described bv Muskhelishvili (1953), the charac­
teristic equations giving i., and Ih may be obtained as

cot ITII, = O. (k = 1,2). cos TV: (55a--e)

The unknown functions!1 and/e in eqn (54) are bounded in (0, a) and nonzero at s = 0
and I = a. In the penny-shaped crack shown in Fig. I physical considerations require that

(

u,U·,+O)->O. 1I 1(r.-O)-'(). ,[H,(r.+O)-H1(r.-O)]->0, for r-+O. (56)
cr

From eqns (54) (56) it then follows that the acceptable roots are

I I. i. = O. (57)

In addition to the standard parabolic behavior of the crack opening displacements near the
crack tip r = a, eqns (30). (54) and (57) show that for small values of r we have

Ie (0) II (0)
(58)11 /I -- r. H' -lI' ~ 1\1)+ r- . r « a.

'1
II '1 0~, ~,

where HI) is the total crack opening at r = O. Refernng to eqn (56) we also have
r(u + - u ) = 0 for r = 0 and r = a. Thus, the unknown function ge defined by eqn (51)
must satisfy the follOWIng condition

"I rge(r)dr 0
..,n

(59)

It should be pointed out that for the interface crack problems in piecewise homo­
geneous materials (where the plane of the crack is a plane of material property disconti­
nuity). the corresponding integral equations are of the second kind, having a Cauchy type
kernel (Erdogan and Gupta, 1971 b: Erdogan and Arin. 1972). As a result, the fundamental
solution of the integral equations has complex singularities giving the well-known stress
and displacement oscillations very near the crack tips. The results given in this study leading
to eqns (54) and (57) indicate that the oscillatory behavior of stresses and displacements in
crack problems for nonhomogeneous materials under modes I and II loading conditions
would disappear if the material properties are continuous and not necessarily differentiable
at and in the immediate vicinity of the crack tip [see also Delale and Erdogan (1988a)].
Furthermore, this result appears to be independent of the crack orientation. For example,
similar results were found in plane strain and antiplane shear problems for a crack per­
pendicular to and termInating at the 'kink' line of the property distribution (Erdogan 1985:
Erdogan et al. 1991: Martin 1992).

In order to avoid convergence difficulties that may be encountered in the numerical
analysis. it is worthwhile to examine the Fredholm type kernels given in eqns (52) somewhat
more closely. By observing that
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, {la,
j f. J I (l.1p)J,,(hp) dp = ~

(I ,
a

1.1< b,

a> b,
(60)

(E(h;a), b < a,

'I"~ JI({]p)Jo~hp) dp = 2 ) h b: _1.12 (61)

"" p n La E(ahl -~ K(a/b), b > a,

roy !1(ap)JI(hp) dp = 2 {;h'
J(I p n b

21.1'

b < a,

b > a,

(62)

[' 11(ap)JI(bp)dp = H 11 (a,b),

" "

j'.' J,,(l.1pll,,(bpJdp = H::(a,b),
n

the expressions for mi/, (i,j = 1.2), gIven by eqn (52) may be written as

(63)

(64)

cl.. <r,} MI(r.s)-\ MI(r,s)-\+ +- ..__.~

s>r. .I r s+r

~f

!nl:(r.s) = n/1 IsH 2:(r.s)+ns I D1:(p)p1n(rp)lo(sp)dp,
,,0

r
'). s < r,

s > r,

-Hoir15 21 (p)pl, (rp)J I (sp) dp,

a.
m::(r.s) = -H{31 .I'

r

r < s.

r> .1.
+

."'£:(r.s)-1

.I-I"

M:(r,s)-1

s+r

- 2/1: r M: (r . .1') -- HS J'x D22 (p)pl, (rp )10 (sp) dp, (65a-d)
()

where H II and H:: are given by eqns (45) and (46) and

I'

(66a-d)
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From

(h+ ))):

4(h+ I)'

(h-I)(h-\):C

lI(h'+ I)
Ii

1. (K-I)cx C

4' fJ: = 8(K+ 1) .
(67a d)

and

.\1,(1'. .I)
lim (68)

lim : K(y) -In (4 ", ., I'): = 0, (69)

it can now be shown that for small values of!1 ri we haw

.1-' I'
In 11- 1'1·

21' I .- I'
~ lnls-rj,

21'

(70a d)

That is, in addition to Cauchy type singularitIes. the kernels of the integral equations have
logarithmic singularities which are square integrable and hence do not contribute to the
singular behavior of the solution but have to be taken into account in the numerical
analysis.

". rilE SOL tTION 01- 1"- If(,RAt H)lATlONS

The closed form solution of the integral equatIon (51) is not feasible. However, after
obtaining the correct weight functions [as given by eqns (54) and (57)], the bounded
unknown functions I, and j. may be determined to a desired degree of accuracy by
expanding them into series of appropriate orthogonal polynomials and by regularizing the
singular integral equations. If the interval is normalized by defining y = (2s;a) - 1, from
eqns (54) and (57) it may be seen that the weight functions and the associated orthogonal
polynomials become

I T I
f'), (II = f>:, ( \ I.

"
\

f') ( I) - P: "II ), I < I < L (71a,b)

"
\

where p;,<'{iI (r), (n = 0, L.) are the Jacobi poly nOimals.
One may also develop an efficient technique hv defll1lng

g,lal I (72)

.4C(as) cc= (I)X,(S), XcII I

" I( I -I')

s' = s/a, (73)

and by requiring that (P,(O) = o. (,Oc(O) = O. The orthogonal polynomials associated with
the weight functions X, and Xc are seen to be (Appendix B)
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I~.I~) nn+i)cos(n+~)8
P:, (t) = ,-.=-------8~

II." IT cos
2

P;, I~.
{(II +~) r(n+~)

I ~)(t) = - cosn8 = T (t)
I ,--- - I / n ,

II.\. rr n..jrr
(74a,b)

(1+t)tn(t)=T"(t)+T,,.,(t), t=2s'-I=cos8, -1<t<1.

The unknown functions gl and g, may then be expressed as

(75a,b)

f.

I E 2n Tn (2s' -I),
" s'( I -s') 0

(76a,b)

where Em Ii = 1,2, n = 0, I, ... ) are constant coefficients. In this article the weight functions
and polynomials given by eqns (76) rather than (71) are used because of the simplicity of
working with Chebyshev polynomials. Thus, by substituting from eqns (76) into the integral
equations (51) and by observing that

I [ S tn I2.I'-I)ds' = 1 ,'I r,,(t)±_'l"n_~,_(t)dt

rr. o I-s' s'-r' rr~ Ilt--x),/I-

(77)= {Un - 1 (x) + Un(x),

Gn(x) + Gn + I (x),

Ixl < I,

x> I,

\=2r'-I,r'=ra,
. sin(n+l)8

['1(1.') =- -;--8--' Ixl < I, cos 8 = x,
Sill

G"lx) =
(1.'- x~_I)n

jx2 _I
.\ > I, (n = 0, I, ...), (78a,b)

the integral equatIons may be reduced to the following system:

I: F I 1,(r'lB ,,+ F'2(rlE~.: = PI (aI"),
I)

I :F21 ,(rlB I ,+F,>(rlB2 ;: = p~(ar'), 1" = ria, 0 < r' < I,
I)

where

F 'j to 'A'''' 1 /1 2 J' (') elk')} p (')'21;(1' =)1 v'/I~r - )- 2 (\', I' + '--r-'- + 21j r ,

(79a,b)
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Axisymmetric crack problem

'I

I',(X) = JXI (s)t,(21- I) ds.

CII(X) = [,2 XI (s)t,(2.1 I) ds.
JIl

C2,(X) = f sX2(s) T,(2s I) dol.

W,(x) = ~(V,(X) + V, _ I (\1 I.

1 ~I { I
PIIj(r') =- J ami I (as, ar') + In is -- r'II\>XI (s)t,(2s' -I) ds',

, 1t 0 2r,

P ( ') - 1 II f (,,'.' I I I' ·'1 (~, " T (I' I) d '22; r - am22 a.1 , at )~ -,. n 1.1 --I ,("" - (.1) ; ...s - s '
IT 0 _I
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(81a--e)

(82a--d)

By substituting from eqn (76a) and by using the orthogonality condition for T", from eqn
(59) we obtain

(83)

Also, from eqns (72), (73) and (76). it may be seen that the conditions ¢I(O) = °and
¢iO) = °become

L (-I )"(2n -t- I )B ln = O. L (- I )"B2 /1 = 0,
~I o~ 0 n {I

(84)

The functional equations (79) may be solved by using a convenient method of weighted
residuals. In this study a simple technique of collocation is used to reduce (79) to a system
of linear algebraic equations (Kantorovitch and Krylov, 1958). In the numerical analysis
the main questions which require careful consideration are the evaluation of the infinite
integrals in the kernels m;,(r, s), the evaluation of the functions Pljk(r'), (i,j = 1,2,
k = 0, 1, ...) given by eqn (83), and the question of the convergence of the series (76). Note
that the integrals in (82) are all of Gauss-Jacobi type and may easily be evaluated by using
the following quadrature formulas:

T~t(T,) = O. 'I = cos C~~~)r:}

(i = I, ... , M), (85)
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" l+r :!.n it

I h(T) -] dT::::-->(I+,:)h(T).
. / \, -r 2l'vf+I'J

T- = cos ((2i:-l)n)
, 2M+I '

(i = I, ... , M). (86)

Hence. the accuracy in the evaluation of the functions Pi/k(r'), (i,j = 1,2, k = 0, I, ...) could
easily be controlled by adjusting the number of terms in the Gauss-Jacobi sums.

It should be emphasized that the procedure described above is formal. To complete
the analysis it is necessary to prove that the sequence of functions g;'.1 obtained from eqns
(76) by truncation will converge to the exact solutions gi' For this, one has to prove that
the sequences g;H are minimal or the related infinite system of algebraic equations is regular
(Kantorovich and Krylov, 1958). The question of regularity for the problem under con­
sideration seems to be very involved. For a special case, the proof that as M _ 00, gM - 9
is given by Erdogan and Gupta (197lc). To obtain the numerical results given in Section
7. M is increased until the repetition of four digits is observed in the calculated stress
Intensity factors. The largest number used was M = 16.

5 STRESS I:\TEI\5IT\ FACTORS

From the viewpoint of applications of the results in fracture studies, one of the
important quantities of interest is the strength of the stress singularity at the crack tips
characterized by the stress intensity factors. We note that equations (51) give the stress
components v,,,(r. -0) and v/,.(r. -0) outside as well as inside the region (z = 0,
0< r < a). Therefore, from eqn (51) one may easily obtain the stress intensity factors in
terms of the unknown functions g, and g: The mode I and II stress intensity factors are
defined by

Since the functions

],,,

5,(r)= I Lm,,(r.S){I,(S)ds, i=1.2
it •.:11 I

arc bounded in the closed interval () r::; a. eqns (51) may be expressed as

,,+ ] _ I '" ~ / (.1')
1 v,··t r , -0) = I -dl+51 (r),
-Ii, :r." (.I-·r)R; (.1)

where. referring to eqns (72) and (73).

(87a,b)

(88)

(89a,b)

(90)

R, (:) = : .(:- a)

R 2 (:) = :' : (: --a)'

(
a-r)12

R( (r) = I -r-

R~ (r) = iVr(a-r)

(9Ia-c)
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Consider now the following functions:

If'd.::) =.,1. +__~ds) ds. k = 1.2,
.eJU ./ (s-.::)Rds)
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(92)

where the contour C encircles the crack and.:: is outside C By shrinking the contour to the
cut, from eqns (89)-(92) we obtain

(93a,b)

On the other hand, following Muskhelishvili (1953). from eqn (92) it may be shown that

!/J ,(.::)
If',('::) = - p,(,::). (I = 1.2).

Ri(.::j
(94)

where P,(z) is the principal part of ij/,(::)/R,('::) at ­
we find

'X. Thus, from eqns (92) and (94)

,,+ I IjJ II!
al·(r.-O)=- +PI(rj+SI(r),

'l)/. R I (r)

"T I !/J2(r).
.,-- a2,c(r. --OJ = - +- P2(r)+ 5 2(r).
-1/1 R:(r)

From eqns (87), (90) and (95) it may now be seen that

Or, by using eqns (76) the stress intensity factors are found to be

(95a,b)

(96a,b)

f.

-"/2uLB 1 ,,. k
I)

,

-- v 2a I. B 21l'

n

(97a,b)

For a homogeneous medium (i.e. for;x = 0 in eljn (4)) modes I and II crack problems are
uncoupled and the stress intensity factors are given by

(98a,b)

In the limiting case of h = 0 the crack lies between two dissimilar materials I and 3.
The system of singular integral equations (51) would then become
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where

(99a,b)

, . MI(lrl·lll)
1<.1 (1'.8) =

\ -- I'

, M 2 (lrl,lsl)-1
1<.,(1',.1') = ---------.

- s-r
(IOOa,b)

_, _ p,(I-K)-PI(l-h)

1- (I+K)p,+(I+K)PI
(1OIa,b)

For an mterface crack in piecewise homogeneous materials the stress intensity factors are
defined hy Erdogan and Arin (1972) :

(102a,b)

In the special case of O"c·(r. 0) = - Pl>' O",(r. 0) = 0.0:( r < a. for example, it may be shown
that (Kassir and Bregman. 1972)

(l03a,b)

Q CRACK OPENING DISPLACEMI:'-JTS AND STRAIN ENERGY RELEASE RATE

After determining gl and g, or the coefficients Bin and B 21I shown in eqns (76), the
crack opening displacements may he ohtained from eqns (36) as follows:

11:(1'. +0) - \\1 (I'. -0) = - fgl (s) UI =
a( h + I)

2~i I

where

, I I I )}+I Bell (....,- sin 2/1{1' -+- . sin (2/1 + 2)8' + -4-- sin (2/1 - 2)8' ,
e _n 4/1 +4 n-4

(l04a,b)

cos: Ii
I'

a
o:( r < a. (105)

Note that /1,(1'. +0) - U I (r. - 0) vanishes for I' ...... O. This may be seen from eqns (104b) and
(73) by using the condition (55) as follows
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I" d I."lim [u, (r. + 0)· II (r. 0)] = - lim I .\(1: (.1) ds = - lim _. 5g2 (5) ds
r-.,.O - ,. -->() r 1'-+0 dr

• r

2tl

(P.(r)
lim r
f-->(I

" r(a

=0
r)

(106)

In debonding problems from the stand pomt offracture mechanics, the strain energy release
rate ~/j is perhaps the most important paramcter representing the magnitude of the applied
loads and severity of component geometry. By usmg the concept of crack closure energy
and the asymptotic behavior of stresses and displacements near the crack tip, '!J may be
expressed as

(107)

7 RESULTS A'\ii) DISClSS]ON

The main results of this study are the stress intensity factors calculated for various
loading conditions as functions of the matenal nonhomogeneity constant rx defining the
shear modulus in p(::) = ~ll exp (rx::) and h/(/ which is the basic dimensionless length par­
ameter in the problem. Table I shows six different loading conditions used in the calcu­
lations. The table also shows the corresponding modes I and II stress intensity factors in a
homogeneous medium containing a penny-shaped crack of radius a obtained from eqns
(98). For the problem under consideration. some normalized stress intensity factors cal­
culated for \' = 0.3 are shown in Tables 2 and l Note that the results given in these tables
may be used to obtain the stress intensity factors for arbitrary crack surface tractions by
superposition to the extent that the tractions may be approximated by second degree
polynomials in r. In all the results given in this section, the interfacial zone thickness h, the
material nonhomogeneity parameter rx, the variable r and the calculated quantities are
normalized with respect to the crack radius u (Fig. I) Thc results for ex = 0 shown in Tables
2 and 3 correspond to the stress intensity factors in a homogeneous medium shown in Table
1. It may be observed that as rx increases. due to the increase in stiffness of the half space
z> 0, the primary components of the stress intensity factors (i.e. k I due to the external
loads Po, PI' P2' and k, due to q,,, ql, q2) tend to decrease (Table 2). The table also shows
that for all six loading conditions given in Table I. secondary stress intensity factors are
considerably smaller than the corresponding pnmary ones and, because of the uncoupling
of deformation modes, vanish for Y. = O. For fixed values of the Poisson's ratio and rxa the
dependence of the stress intensity factors on the thickness ratio h:a is shown in Table 3.
From p, = ~ll exp (rxh) andy.u = constant it follows that for h = 0 the medium becomes
homogeneous for which the stress intensity factors are given in Table I. These results are
seen to be the limits of the calculated stress Intensl1y factors shown in Table 3 for (h/a) --> O.
However, for fixed P,i/l l • in the limiting case of h= 0 the problem becomes one of bonded
dissimilar half spaces containing a penny-shaped mterface crack. As hia approaches zero
k I and k 2 do not tend to known limits that can be determined from the interface crack
problem. For (ha) -> 0, the quantity which remall1s continuous is the strain energy release
rate '!J = ~/j(h) where (~(lz) is given by eqn (107) and '4'(0) is obtained from the solution of
the interface crack problem in bonded dissimilar materials. Some representative sample
results giving the calculated values of (I}(h) are ~hown in Fig. 2. The values of ~/j(O) shown

Table I Loadll1g conditIon, used and the ,.1lTcsplmdll1g ,Irc", IntenslIy factors for ~ = 0

PI (r)

p,lrl

/;

k:

r'" r', (r II) r' r r ,II I) II 0

II 1.1 I) 'i -'r,(r,a) -q~(r!a)~

- 4
PII\, II .f' "-

(/ I' "
I !I 0 0

'i7: _~ i7 4
() (I II

(fil\._ II 3~'1, "- II iq:\,i/a



212 M U;lUrk and f-. Erdogan

Table 2. The vanallon of stress It1tensllv factors v,nh hi [or various loading conditions shown
in Table I. '. = fl ..... Ii. .,', ~ 'I,v a. I = II 1.2

".,11'.0) = I',(rl.
k I TI) k ~ II

". 11'.01 = O.
k, ,

\=(U.

k. "
Ii iI = 0.5

k, r.

\.0
20
1.0

- 06
0.4
02
01
0.0
01
0.2
0.4
0.6
I.I!
2.0
~ .0

0.9052
07946
07065
0.6764
06624
06492
06428
0.6.166
0.6.106
0.6247
061.1.1
0.6026
0.5824
054.16
0.51.15

.. 0.1.196
- 008 I'
- 0.0.'58
-0.0204
- 00 l.13
- 00065
.. 00012

00
U0011
00062
0.0121
(U)j J7
00284
00506
0.0684

067(,1
0601>4
054711
0.52711
05176
05086
0.504.1
0.5
0.4959
I! 4918
11.4841
04766
04627
04.,4.1
041.16

0.0824
- 00487

0.0117
-00125
-0.0081
-00040

0.0019
00
0.0019
0.0038
0.0075
0.0109
0.0176
0.0.118
0.04.16

05532
oSill 8
04596
04450
0.4377
04309
04276
04244
04213
04182
04123
04067
0.1966
0.1747
0.1576

- 0.0542
-- 0.0.127
-0.0149
-0.0086
-11.0056

11.0028
-0.0014

0.0
OOOIJ
0.0027
0.0053
0.0077
00125
00230
0.0319

'l.O

" .. (1',0) = O. "11'.11) = 1',(11.
k; "i k, .,'" k,:,

= (U.
k,;',

Ii iI = 0.5
k, .,',

- .10
.- 2.0

1.0
0.6
0.4
02

-0.1
11.0
11.1
11.2
0.4
11.6
1.0
211
.1.0

0.0222
0.0156
0.0079
0.0047
0.0032
0.0016
0.0007
n.o

-0.0007
--00016

0.0031
00046

- 00076
-00142

0.0205

0.5503
0.5.125
D.5 I 57
0.509.1
0.5061
0.5030
0501"
0.5
0498"
04970
04941
04912
0485"
04725
04610

0.014.1
O.011l3
lJ.(J05.1
0.0032
OJl021
0.0011
lUl005
0.0
0.000"

-0.0011
- (J.()1l21

0.OD32
0.005.'
11.0104
11.014')

0.45.10
114428
0.4.13.1
0.4297
0.4279
0.4261
0425.1
04244
04236
04227
04210
0.4194
0.4161
04086
0.4018

00102
0.0074
0.00.19
00024
0.0016
00007
0.0004
0.0

- 0.0004
-0.0008
-0.0016
-0.0024
-0.0040
-0.0079
-- (U)j 16

0.3953
0.3881
0.3814
0.3788
(1.3775
0.3762
0.3756
0.3750
0..1744
0.3738
0.3726
(1.3714
0.3690
0.3636
(1.3587

in Fig. 2 are calculated from the interface crack solution, The figure clearly shows that the
function (#(h) is continuous at h = 0 In the other limiting case of h = x, the medium
becomes homogeneous having the shear modulus Ill. We note that the normalizing strain
energy release rate

~I'
n( I +h)

/lila
Xii

(l08)

used in Figs 2 4 is obtained for a pressurized crack of length 2a in a homogeneous medium
under plane strain conditions, whereas the corresponding value for a penny-shaped crack
of radius a is (4/n2)C#e), both for a unit crack front. Thus, for (h/a) ~ x, '#Wfo would be
expected to approach 4/n2 = 004053. This trend. too, may be observed in Fig, 2 for all
values of )1,t!h

Some sample results showing the dependence of the strain energy release rate C§ as well
as the stress intensity factors k] and k 2 on the modulus ratio i1,/)1] are given in Figs 3 and
4. Note that for )1,,)11 = I the medium is homogeneous and the corresponding stress intensity
factors are shown in Table I. In this case, from Tahle I and eqn (107) the normalized strain
energy release rates for the loading conditions considered in Figs 3 and 4 may be obtained
as (4 n2

) = 004053 and 0.25, respectively. The results for the special case of )1,/)1] = I may
easily be verified from Figs 3 and 4. A~ II, )II approaches zero, the stiffness of the half space
:: > 0 also approaches zero and. consequently. k . k: and 't} become unbounded. In the
second limiting case of (li)!)1]) ~ f the problem becomes one of an elastic material (z < 0)
bonded to a rigid half space. Thus. a~ Ii, III increases, as shown by the figures. k], k 2 and '!f
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O~
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0-1
0.'
0.6
07

O.X
O'!
IU
~IJ

J.O
-Ii)

'iO

Ii (/

O.il

0.1
O~

o .'
0-1
0'
0.6
it 7

I.l.X
II.'!
10
~.O

,I)

4.i)
'i.1)

O(~~hh

()-«~>~

o h~ I
0616
06 II'
il.hil;C!

1)60411
06(11 X
1I'c!l) ,

1).'c!-;'1

U. "'!'i'
ll. 5~ 7_~

II"X"~

I) "X4"
U "X4~

II

Ollll~

Oilll'

0004
OOO.lC!
OOI),X
OOU111
0001,
II ()().1()

()O()~­

IU)O~'

(11)(11,
()Olll

()O()I
(1)01

I,

Jl, \ (/

il
l).iHI'i~

0.OOX4
lUll III
0.0] 3~
0014'!
U.OI64
00177
UOI X6
OUI'!'i
UO~OI

UO~~6

UU~.'O

OU~31

OO~31

II "IIOU
114')!
o 4'!"
U4'!4
04933
049~(l

049~1

04916
04'!12
1)4lJOlJ
OAlJ07
I)AS'!lJ
I)AX9S
04SlJX
04SlJS

U'iUI)O
o -IlJ4
OASX
04X'
04x~~

OAW'
04 7 S'
OA 76­
1147.'"
1).4741
04nl
046X'
1146 7 11
1).46116
1146h'

(/ '\ I

II
II.UII I ~

OIlO~'

OOO~7

III1U~X

IIUO~­

It002'
11002.'
UOO~ I
0.001 X
0001:
OOOOlJ
U.OOO­
UOOlP
0000-

I' "\ ,f

II
IIOU,'
000"
11.0071
O.OOS.'
IIOO'!~

110100
0010 7

11011 ~

1)011 7

0.01 ~O

110 I"
IUII,7
1101<"
0111'"

114~44

II 4~'

I) 4~~

II 4~ I
II -I~OI

:1 4~1)~

0-11%
0-11 '!'
1141l)2
1141'!O
041S9
11-11 X4
1141 X4
1141X4
1141X4

1"

04244
0419
041'i
OAI3
OAI09
OA093
OA079
OA068
OA0'i8
OAOSI
OA044
OAOl2
04004
04001
OAOOO

I,

o
0.0014
0.0019
0.0021
0.0021
0.0020
0.0018
0.0017
0.0015
0.0014
0.0013
0.0007
0.00O'i
O.OOOS
O.OOOS

1"

o
0.0027
0.0041
O.OOSI
O.00S9
0.0065
0.0070
00074
0.0078
00081
0.0083
0.0092
0.0094
0.0094
0.0094

k,

0.37S0
0374
0373
0.3727
0.3723
0.3719
03717
0.371S
0.3713
0.3712
0.3711
0.3707
0.3707
0.3707
0.3707

approach certain finIte "t11lts. The figures also ,IH1\\ that at (fI,/!I,) = L as expected, the
secondary stress intensity factors change sign. The rhyslctl consequence of this may be the
change of sign of the rrobable crack growth angle 0" shown Il1 Fig. 5 which is calculated
from (Erdogan and Sih. 19(3)

I, ,In /I, + h: (.~ cos (I" - II (I. 1T,,,,(r. (I,) > O. (109)

The figure shows that iJ the medIUm IS isotrorlc \\lth regard to the crack growth resistance
~{(, the maximum energy release and. as a result further crack growth, would take place in
a direction toward the less stiff material. On the other hand. if '§c = ~§c(£:J), then the crack
growth direction Ii" would be such that (§( Ii )''/, (Ii) IS maxim um, (§(O) being the energy
release rate for a small radial crack extension Il1 the dIrection of O.

In this study. largelv to snnpltfy the analYSIS. the Poison's ratio v is assumed to be
constant. In an act ual nonhomogeneous medl urn this. of course, is not possible. The
assumption can only he justified if the fracture mechanics rarameters of interest, in this
case the stress intensity factors. prove to he relatively insensitive to variations in the
Poisson's ratio. To give some idea ahout the intlucnce of the variations in v on the stress
intensity factors. some addItional results are gl\cn in Table 4. The table shows the nor­
malized stress intenSity faclUrs for various values ll\ \ and for fixed values of h;a and /13//11'
The external loads used <Ire' abo shown 111 the tahle, It may he observed that the influence
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-po, Uk = 0,

62o .4

h/a
FIg, " \;'II'\'.\llon oC ,;train <;n~rg) release rate with Ii'a for v = 0,3, and 0',,,

Il,. = )!ll ,,,)p~(l811,·

hg: \ 'In,\llim 11C S\I"e" intenSlt\ 1,I('I<1I"s dnd straJn energy release rate with stiffness ratio )l)/).ll;
IU. Ii II = iI.'. ('I po. ril._ = O,~" = n(l+K)p6af8/1,.
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Fig. 4 Vanatlon \'1' stress illk'n.,," f"clor;, <lnd ,train ~nergy release rate with stiffness ratio ).l)!IJ.,;
1= IU. Ii Ii =. fl'. rr (J, (i,,_ = '!D' '§" = 1!(I+,,)q~a!8~tl'
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Fig. 5. The probable crack growth dIrection II" " I' u for Ii " ~. iI.S. r = 0.3. 1T"lr.O) = O. (a)
IT. I" 0) = . 1',(1' a)'. (b) G.. (r. 01 !' I I' II). Ic') (7 ir. OJ =- Po.

Table 4. The Influence of the POIsson', rallp dn Ihc \tn..~\"l lIltenslt~ factors. loading:
IT (1'.0) = I-p". .- p,(r!a). - 1':11' "I'). IT II'. 01 = 0.0':; I' < a

k, k. k k k, k,

Po'\. (/ Po, (/ P,\. "
/) .... ,I P·\, (/ P: \./ a

!I,//l, = I "0 Ii " = OS

0.01 1.27H 0.459 0.902 n,2.:'~ 0714 -0.149
0.1 1316 - 0.466 0.926 0.260 0.731 - (l.! 55
0.2 1.363 0.471 0.95' 0.26 S 07S 1 -0.159
0.3 1.41 H 0.472 09H'! 11.2h7 0774 -- (l.!M
0.4 I.4H7 0.465 1.032 0.264 0.H06 -0.168
OS U74 0.436 I.OH6 Il.: ~2 OH4S -0.169

!I J.l1, = 7" '1 (/ I) S

OJ)} 0.445 o 145 0.366 iI 094 0.320 0.073
0.1 OASO 0.134 0369 iI.OH" 0.322 0.068
0.2 OA55 0.122 OYI ilI)79 (U23 0.061
(U OAs'! o 105 (U72 ilO69 (U24 0.054
0.4 OA60 0.OH4 0372 (lOSI> (U23 (1.043
0.5 OASh O.05f> 031,- 11019 (UIS 0.029
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of the Poisson's ratio on the stress mtensity factors does not seem to be very significant.
The exception appears to be the case of relatively large negative values of y.a or very small
values of f.1d'l in cracks under mode I loading.

An example showing the relative crack openll1g Ill:: directioll. \t''; - \t'l is given in Fig.
6 where the llormalization factor tV" is the maximum relative crack surface displacement
for the corresponding pressurized plane strain crack III a homogeneous medium, Note that
for (f.13! f.1d = I the displacement amplitudes for (he axisymmetric and plane strain cracks
differ by a factor of (2 7[) = 0.6366. The resulb shown in Fig.. 6 are calculated from eqn
(104a).

The results given III this article and the more extensive results given by Ozturk and
Erdogan (1994) show the effect of composition gradll1g and the thickness of the interfacial
zones on certain fracture mechanics parameters. They can be used by material scientists as
an additional screening tool in optimizing the material desig.n. They can also be used by
design and maintenance engineers in modeling the subcntical crack growth process needed
for service life estimates.
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APPENDIX H

B.I Deriratioll of t"IXI
By letting Y. = - I 2, Ii = 12 In the r()II("\ll1~ recurrence relation for Jacobi polynomials (Abramowitz and

Stegun, 1972)

we find

(B1)

From

I'

'\1 f'
, 11+ I ",'1\1 + p' -, "'(x),n+ n+- I

I (1/ ,[I
1\1 --'-- 7,,(x)

n~ '\ IT

(B2)

(B3)

II

and eqn (B21 It !dlows that

1\1

[il/, II
r,l\ 1-

1/+ I r(II+~)------=--= T", ,(xl,
(11+1)')rr

Observmg that \ cos II and

I 11/ - ,
I r,(I) , T" IX)).

n '\, JT

(B4)

from eqn I B41 v.e obtall1

(B5)

[ 11/ - : I cos 11/+ I 2)0

cos (II 2)
(B6)

\'
1\) I, ,(x)

i J t- II
(B7)

B.2. Some usefu/mleyra/s iIIi'll/I'm,! ('!I"hl'l!l,'! f'U/II/OIl/lol.\

J: .1"

J' VJ

\

1_,1,,12.\ I)ds

I"~ (2.\ Illl>
\

J r'111121/ ~)II

I () 'I 21/ ~

5 sin (2110)

+
1/

1 .
,S1l1(211111- --S1I1(211+2)1I.1I31.
_II 2n+ 2

II \ _SII11211), n = 0,

S SII1 i21/ 2)0

:!-n

JlIs1n1211+210 + ~sin(2n+4)0 + sin (2n-,-6)1I}
21/ + 2 2n -+- 4 2n + 6 ' n 3 3,

(B8)

(B9)

c,,, IISII1 II t .cos IIslnO+;cosOsinOJ, n = 0 (B10)

.:; 'J[

II)
'I Sill X(I ~ sin 60 ',in 411 11 sin 201

16 (2 12X 32 + --32-r 11= I
I Yh

T[

iI )
1,111 Ii III " SII1 XII "sin (){! 5 sin 411 5 sin 2O}

16 2 J2X 48 ~ "32 + -32' ' n = 2
IhO

(Bll)

(BI2)
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where

t
sT,,(~, II

d.I

"-
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I II

r Sill 211
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1, If )
, I" (/ x

U I)

"111 2/1
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Sill I ~II - 2)01
~~; '-4-('

(B13)

,," " (B14)

2 In 2. /I = O.
In " Ii r, (2\, II

d.,
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