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Abstract  The problem of a penny-shaped crack i homogeneous dissimilar materials bonded
through an interfacial region with graded mechanical properties is considered. The applied loads
are assumed to be axisymmetric but otherwise arhitrary . The shear modulus of the interfacial region
is assumed to be (7)) = w exp(22) and that of the adherents 4, and ji; = g exp (zh). h being the
thickness of the region. A crack of radius « is located at the = == 0 plane. The axisymmetric mode
[} torsion problem is separated and treated elsewhere. Because ol material nonhomogeneity. the
deformation modes I and 11 considered in this study are alwavs coupled. The related mixed boundary
value problem is reduced to a system of singular integral equations, The asymptotic behavior of the
stress state near the crack tip is examined. and the influence of the thickness ratio A ¢ and the
material nonhomogeneity parameter x on the stress mtensity factors and the strain energy release
rate is investigated. The results show that the stress state near the crack tip would always have
standard square-root singularity provided & > 0 or the material properties are continuous but not
necessarily differentiable functions of -

I INTRODUCTION

In studying the fracture mechanics of bonded muterials the structure and thickness of the
interfacial regions seem to play an important role in determining the crack growth resistance
parameters as well as the crack driving force. Very often. however, in such studies the
interfacial region is simply neglected and the medium is assumed to be piecewise homo-
geneous. This type of simplified material model 15 generally adequate if the interfacial zone
thickness is very small relative to the crack length and other macroscopic dimensions. and
if the purpose is to evaluate. for example. the strain energy release rate as the measure of
crack driving force {for review and references see Suo and Hutchinson (1990) and Rice et
al. (1990)]. The model may be improved by assuming that the intertacial region consists of
a relatively thin homogeneous laver with material properties different than that of the
adjacent materials and the debonding crack is cither embedded in the interfacial layer or
lies along one of interfaces [see Arin and Erdogan (1971). Erdogan and Gupta (1971a, b),
and Erdogan and Arin (1972) for bonded isotropic materials. and Erdogan and Wu (1993)
for collinear interface cracks in orthotropic materials bonded through an orthotropic
layer]. In using this particular homogeneous intertacial zone model lor studying debonding
fracture. even though such calculated fracture-reluted quantities as strain energy release
rate, stress intensity factors and crack opening displacements are heavily influenced by the
properties and the thickness of the interfacial laver. conceptually the related crack problems
are the same s that of conventional embedded orintertace cracks in piecewise homogeneous
materials.

Recent studies, however, seem to indicate that largely as a consequence of material
processing, in many cases the thermomechanical properties of the interfacial region vary
continuously in thickness direction, resulting in a highly nonhomogeneous layer between
two homogeneous materials. Electron microprobe line scans and scanning Auger depth
profiles indeed show that in some diffusion bonded materials atomic composition of the
two materials varies continuously across the nominal interface (Shiau e ¢/.. 1988 ; Brennan,
1991). Similarly, during some deposition processes. as a consequence of sputtering there is
a certain amount of mixing of the two species. giving again an interfacial region with steeply
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Fig. I. The geometry of the problem for two dissimilar homogeneous materials bonded through a
nonhomogeneous interfacial zone

graded properties (Batakis and Vogan, 1985; Houck er al., 1987). There is also the new
class of materials called "Functionally Gradient Materials’ (FGMs), used largely as coatings
and interfacial zones, in which the material properties are intentionally graded. These are
essentially two phase (e.g. metal/ceramic) nanocomposites synthesized in such a way that
the volume fractions of the constituents vary continuously in thickness direction to give a
predetermined composition profile [see Yamanouchi er al. (1990) and Holt et al. (1993) for
extensive review and references]. FGM coatings and interfacial zones, designed mostly for
high temperature applications. seem to be quite effective in reducing residual stresses
resulting from processing (Lee and Erdogan, 1994) and in enhancing the bonding strength
(Kerrihara et al.. 1990).

Fracture mechanics studies of bonded materials require the solution of certain standard
crack problems. With the exception of two homogeneous half spaces bonded through an
FGM layer containing a penny-shaped interface crack and subjected to torsion (Ozturk
and Erdogan. 1995). the solution of few interface crack problems that exist in literature has
been obtained under the assumption of plane strain (Delale and Erdogan, 1988a, b) or
antiplane shear loading (Erdogan and Ozturk. 1992 Ozturk and Erdogan, 1993). In this
study we consider the axisymmetric problem of two dissimilar elastic homogeneous half
spaces bonded through a nonhomogeneous interfacial zone. Referring to Fig. 1, it is
assumed that the composite medium contains a penny-shaped crack on one of the interfaces,
the related mode [T or the torsion problem has been uncoupled, and by separating the
solution of the uncracked medium under given applied loads, the remaining coupled mode
I-mode II problem is reduced to a perturbation problem in which the crack surface tractions
g_. and o,. are the only nonzero external loads.

2 FORMULATION OF THE PROBLEM

The axisymmetric crack problem for the composite medium which consists of two
homogeneous materials bonded through a nonhomogeneous interfacial region is described
in Fig. 1. For each one of the constituents 1. 2 and 3 shown in Fig. 1, the kinematic
relations. the Hooke's law and, in the absence of body forces, the equilibrium equations
for the elastostatic problem may be expressed as follows:

cu, u, ow, 5 Cu;  Ow;
Epr = o by = . b= oo 2. = =
Ty ! r cz v éz  or’

(i=1,273) (1)



Axisymmetric crack problem 195

. cu
Tyr = (/n + 2.“!) 7.

'

F

. U ( U, ( H
o = (£, +20) + 7, o )

. cw, <u u
oo = (A +20) o = -
Cz r r
Cu;, W) )
7, = ,Uy('?’ + ) =12.3), (2a-d)
cz Cr ol
co,, (O' 1
-t = + Ao, —0u) = 0. (3a,b)
cr 0z r
co,. (o 1
. — 4+ g, =0 (i=1.23)
cr Cz

where in the usual notation /4, and g, are Lamé’s constants, y; is the radial, w; the axial
component of the displacement vector, and ¢, and o,,, respectively, refer to strains and
stresses in the medium, / = (1,2.3). (j.k) = (r.#.-). In this study it is assumed that the
Poisson’s ratio of the composite medium is constant {i.e. v, = v, = v; = v) and the shear
modulus g, is approximated by

B i
Wa(2) = er. o= hlog (2 /1)), 4)

where 4 is the thickness of the interfacial layer and, depending on the relative magnitudes
of u, and ps, the constant x may be positive or negative. Even though it is based largely on
mathematical expediency the foregoing assumption is not altogether unrealistic. The pre-
vious results as well as those obtained in this article indeed seem to show that in problems
involving practical materials the influence of the Poisson’s ratio on, for example, the stress
intensity factors is rather insignificant (Delale and Erdogan, 1983 ; Konda and Erdogan,
1994). Also exp (xz) 1s a convenient function 1o express steep material property variations
in the interfacial zone in a simple manner. Furthermore, an exponentially varying modulus
1s quite adequate to study the basic features of the problem near the tip of a crack lying
along a kink line of the material property distribution (Fig. 1).
Defining now k = 3 —4v and substituting from eqns (1) and (2) into (3) we obtain

et 1) *u, N 1ou 1 AT | Cu, O Y u,  Ow, 0
- E— c— R — =
K orr  rér 2 R Hp T )x(‘ ‘zor ) (x 622 Oréz ’
(kD) ‘u,+15u,+<~ ) ( | &, U
” e bl
créz vz -2 K—1) créz o
=1 fcu,  cw)
- (S;g"(ll)-f-(,%‘k)f )+(K+1)5X*=0,
r o Or,
(x=0 for i=173, a#0 for i=2). (5a,b)

Equations (5) must be solved under the following continuity, boundary and regularity
conditions :
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u3(r.z‘):u3(r’:)}. 0<r<oo. z—h )
wa(r.z) = ws(r, o)
04,.(F.2) = 65,-(r.2)
JZ::(r~Z) = GI:,‘("~:) . 0 <r<o, z= O, (8)
Gy (F2) = 04,-(F.2)
O'1::("9 HO) = 03::("- +O) :pl (r)
0< R 9
O’]r:(r\ “0) - O—fr:(r* +0) :pl(") ’ r=a ( )
—0) = u, 0
u (r, =0) = u(r. + )} a<r<oo (10)
wi(r, —=0) = w.(r. +0)
u(r.z) -0, wi(r..)»0. for r+z2->w, (=1223). (11)
We now assume the solution of eqn (5) in the form
ur,z) = J F(z,p)pJ (rp)dp,
3]
Hv[("# Z) = f (;1(:a p)p‘]()(rp)dp* (l = 1’2~3) (12a7b)
0

where J, and J, are the Bessel functions of the first kind. Substituting from eqn (12) into
(5), defining D = d/dz, and inverting the related Hankel transforms we find

k=D +ak—1)D— (k+ Dp* | F,—{2pD+ap(k—1)}G, =0,
20D +2(3—K)p}F,+ {(k+ 1)D* +a(k+ 1)D—(k—1)p*}G, = 0,

(x=10. for i=13; 2a#0, for i=2). (13a,b)

The solution of differential equations (13) may be expressed as
4 4
Fiolzp) = ) Aia(p)e”™. Gyz.p) = Y Biia(p)e™, (14a,b)
k=1 k=1

with different sets of A4,, B, and m, for each medium, where 4, and B, are unknown
coeflicients and m,, . ., m, are the roots of the following characteristic equation:

m* + 2am® + (o8 = 2p"ym* = 2ptam+ w?pt+pt =0. (15)

K+1
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From egns (13) and (14) it can be shown that
Biio=a A, . (16)

2pm+pa(3—w)

. (k=1,....4). (17)

a, = — —_
' (K + Dmg + ok + Dm, —(k—1)p~

The characteristic equation (14) may easily be expressed as

R
(m* +am—p?)7 + hy*p- = 0. (18)
K+ 1

from which it follows that

o — X ! N N i4 ’/BiI 12
my =my = "i'“f‘i X+ p+1 \/;ﬁlw
[ S PR L
M, =m, = — : -5 {x‘ +p° +14V/' l\ji-% 1p} (19a,b)

where bars refer to complex conjugates. After solving for m,, .., m,, the expressions for
coceflicients g, given by eqn (17) may be simplified as follows:

2my + a3 — kK
dy = — - *L;;;;:; 'l*'* o tk=1.2)y, ay=a,, a,
2p+i1\ (3—x)(1+r)

(20a—)

Il
=
S

The foregoing derivation is for the nonhomogeneous material 2. For the homogeneous
materials 1 and 3. by substituting 2 = 0 in eqn (13), it may be shown that

F(p.zy=(A4,,+zA4,)e" +(4, . +-4,)¢e .

Glp.2) =(B+zBy)e” +(B, +:By)e ™, (i=1,3), (21a,b)
28
B, = —A,+"A. B.,— -4,
P
Bi= A+ %A,4. B, = A, i=1.3 (22a-d)

Using the regularity conditions (11) and defining the foliowing new unknowns

A; :;4]1. A:Z/{l:. A4*:;4z1. A3:A34, (2321—(1)

from eqns (21) and (22) 1t follows that
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Fi(p,2) = (A, tz45) ¢

K z<0,
G(r,z) = <fA, +<; —2>A2>e”“’

Fy(p.z) = (A; +zA5)e ™"

' X z>h.
Gy(r.z) = <A7 + (E +2>A8)e“"z

By substituting now from eqns (14), (24) and (25) back into (12) and by using (2), the
displacements and the relevant components of stresses may then be expressed as follows:

24

25

uy(r.z) = j (4, +:z4;)e”pJ (rp) dp,
{

)

s = | [+ (S —z)Az)eﬂpJo(rp) dp, (26a,b)
v 0
P
w(r.z) = | Y A€ pd (rp)dp,
Jo k=1
s 4
wy(r,z) = [ Z a, A, ., " pJy(rp) dp, (27a,b)
Jo k=1

us(r,z) = J (A, +zAg)e #pJ (rp)dp,

i~
wilr,z) = ' (A7 + (; +Z>Ag)e””’pJ0(rp) dp, (28a,b)

1 X
— 0. = J {=2pA, +[x+1-2pz]4,} e”pJo(rp) dp,
§

:u'l )
1 [
;— ay,- = J 1204, +[1 —k+2pz]A4,} e7pJ, (rp) dp, (29a,b)
1 0
K—1 hd
#“ (”*) = Z [(k + Dmya, + (3 —K)plArs 2 €™ pJo(rp) dp,
=1
1 4
O = Z my — par] Ay, 2 €™ pJ, (rp) dp, (30a,b)
1a(2) 0 k=1

1
0 J { —2pA; —[k+1+2pz]dg} e pJo(rp) dp,

1
/TGJ" =J —2pA;+[1 —x—2pzjdg} e 7 pJ (rp) dp. (31a,b)
2 0

The functions 4,, .. ... Ay are determined from the boundary and the continuity conditions
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of the problem. Equations (6)-(8) give the following six homogeneous algebraic equations
in A:

4
Y e A, —e (A, +hdg) =0,

ko=t

4 ' N N
Z akem“'Ak+2‘e\‘mi:A’/‘+(+}z)‘4x] :0‘
po

k=1

4

Y ot A —e = [ 2p - (x| +2ph) Ay] = 0,

k=1

4
Y he™ Ay —e = 2pA; + (1 =K —2ph) Ax] = 0,

k=1

4
Z mA = (k—1D[—2pA +(k+114,].
k=1

4
Y LA =2pA, —(k—1)A4-. (32a-f)

k=1
where
o= G—K)p+ K+ Dnya. L =m ~pa,. (33a,b)
Solving for 4., ..., A, from eqns (32) it can be shown that

Az = (E,L, +E(-L-I)/{I +(E4L:+Eh1::)“fz-
144:L|/4‘|+L2/f3, A = /1—¥~ /4&314—4-,

4
A, =Y

h
[l“f‘&(lf(l;\)}e(m“”'m/l“*:.
t K
p (1, ~ 4o lh
;(ak—l)e (A" PR (34a-1)

4
Ay =Y

where the expressions for E;, E,, L, and L, are given in Appendix A, L, A.,, are the
complex conjugates of L,, A;.,. (k = 1,2) and

A] = 2pA]. A: - U\*])4: (35)

The unknowns A, and 4, may now be determined from the mixed boundary conditions
(9) and (10).

3. THE DERIVATION OF INTEGRAL EQUATIONS

To reduce the mixed boundary conditions (9) and (10) to a system of integral equations
we first define the following new unknown functions :

¢
g.(r) = a {wa(ri+0) —w (r.—0)1,

[~

1
g-(r) = . {rus(ro+ 0)—ruy (r,—0);. (36a,b)

w

’r

From eqns (27), (28) and (30) it then follows that
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gi(r) = J [(—1=2pZ)pA, +(k—(k—1)pZ3)A;]pJ (rp) dp.
0

g-(r) = J [(=142pY)pA, +(x~1)pY,A4,]1pJ(rp)dp, (37a,b)
0

where the functions Z;, Y, (i =1, 2) are defined in Appendix A. By taking the inverse
transform of (37) and solving the resulting equations for 4, and 4, in terms of the new
unknown functions g, and g, and observing that g, = 0, (k = 1,2), for r > a, the functions
A, and A, are found to be

(k—1)p Y, “ —(k—1)pZ, ¢
pA, = ’ Angr 2 L sg, (s} (sp)ds— )“""JL—-—A](L[; ) L 5g2(8)Jo(sp) ds.
2pY, (p)—1[* 142pZ “
A, = — 'ﬁA],f(ppTw ﬁ sg (), (spyds— (-A‘:O(p—;@ J'O 5g,(8)Jo(sp)ds, (38a,b)
where
As(p) = (K=I)(=1=2pZ)pY.— (= 1+2pY )k —(k—1)pZ>). (39)

Up to this point all conditions of the problem except (9) have been used. Thus, by
substituting from eqn (38) into (30), the conditions (9) may be expressed as

x ‘ 1
[ Pi{p)pJitrp)dp = ‘/;"pl (rn, 0<r<a,
] 1

1
P.(pypJ (rp)dp = ;pz(r), 0<r<a, (40a,b)
1

v}
where

u a

sg1 () (sp)ds+dya(p) .[ 5g2(s) o (sp) ds,

0

Pip)=d(p) [

Jo

i a

59, ()1 (sp) ds+da> (p) J 592(8)Jo(sp) ds, (41a.b)

0

Pi(p) = d:l(P)J

4]

and the functions d,(p). (i.j = 1. 2) are also defined in Appendix A.

In order to avoid working with divergent kernels and to simplify the analysis regarding
the asymptotic behavior of the kernels, first both sides of (40) are integrated in r. By using
eqns (41) it may then be shown that

4 (e 1 ",
J' Jirp)dp (dlljt(l)s).flw(‘\\)+d|:Jn(PS)(/2(S))Sd5=E<J Spl(s)d5+cl>7
0

v 1

¥ u l T
‘J Jolrp)dp J (dyJ, (p8)g () +ds-J o (ps)g,(s))s ds = /T <J pa(s) dS‘*‘Cz)»
0 (

) 1

(42a.b)



Axisymmetric crack problem 201

where ', and €, are arbitrary constants. Equations (42) are essentially the integral equa-
tions that determine ¢, and g,. For p — x it can be shown that the functions d,{p) have
the following asymptotic behavior:

5

- ’\+D (1)‘+ (’\ B ])&T;}) <1>2+O(p 3)3
het Ak 1)° Hr+1)7F \p

A 2 .
dy-{p) = z R x) +0(p ),
2w+ D) \p, 4(k+l)

dii(p) =

1 /o Kol 7ay
L) = - o 0w .
) 3(K+])( ) 4(K+])~‘( ) =0 )
2 | % K —‘I
I’wﬂ = - — —— ( 0 -3 43'
dr-(p) o 2(;\-+l)( ) e )+ (p=7). (43a-d)

Thus. from eqns (42) and (43) it mav be shown that

it rr

e K+ 1
‘ H res) =0y os)g ) Ay - (r 3 )g- 1) s ds = 5“\’ (J sp(s) ds+C1>,
=t

o0

I

! /\‘9‘]
! o g ) CH )+ (o)) () s ds = (
o0 y

p-(s)ds+ Co),

(44a,b)
where
(1 ‘
. 5 [K(s r}— E(s/r)], s<r.
' 2y
H ((r.s) = Jorp) (sp)dp = . < | (45)
< ) l (K(r's)— E(ris)], s>r,
p
ol
. Kisry., s<ur,
My 7 4
Hotrosy = | Jrp)dysprydp = <J | (46)
4 n [
v ! ( K(r $), S>> T
hotr.s) = Dy (py i sp)d, trp) do.
Jo
far.sy = Dy () datspi, (rp) dp,
A (ros) = ‘ D~ (pV s rpydp
JO
haatrosy = | Daap)otsp)dy(rp) dp. (47a—d)

L0
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; {11|(p_) _ dlZ(p)
Dll(p) d”( ) 1- Dl?_(p)_d“(w)’
driAp) _ dy>(p)
Dy (p) = 'c’l,’ (% ’: D..(p) = dy2(o0) -1, (48a—d)
2 2
d”(X)—K:{:l‘ dyr () = AK~+—1’ (49a,b)

and K and E are, respectively, the complete elliptic integrals of the first and second kind
defined by

A~

n. 2 8 .2 ‘
K(k):J @ E(k):J (1—k>sin>0)'2do, 0<k<l. (50)
0 (lAkzsin“ H)l' 0

If equations (44) are differentiated term by term in r, the integral equations may be reduced
to the following standard form

S—r s+ T,

1 ' l 1 1 fu 2
.[ (4—»»{— )ql(\)d\—r : ' 2’711,(7 s)g,(s)ds— Z,u pl(r)

Ss—r s+ ) i

l 4 1 Pa 2 - ]
- J <l - — A >g (s)ds+ J Y my(r.5)g,(s)ds =%L_—p2(r), (51a,b)
0 - 1

where the Fredholm kernels i, are given by

M, (r,s) M (r.s)—1 -
my,(r.s) = *“3*_7 ] T +7ZSJ Dy (p)pJo(rp)/i(sp)dp,
. 0

ma(r.8) = mf Di~(p)pdotrp)t.(sp) dp,
4]

™y

m, (r,s) = —nsj D5 () pd (rp)d, (sp) dp.,

[}

M L (r, s)—l W:U‘,A‘)V
S—r s+r

1 * ,
My, (r.s) = ‘-ESJ' Dy (p)pd (rp)Js(sp) dp, (52a—d)

‘ \ [:‘("\), S:;,LZKG), . (53a,b)

From eqns (51) it may be seen that the dominant kernels of the integral equations are
of the generalized Cauchy type (Erdogan. 1978). Thus by expressing the solution in the
form



Axisymmetric crack problem 203

oS
gi(s) = f ‘) . —1I<Retr, ) <1, (k=1,2), (54)
(e — §)'s's

and using the function theoretic method described by Muskhelishvili (1953). the charac-
teristic equations giving 4, and 1, may be obtained as

cotmy, =0, (A=1,2). cosms, = —1. cosmi, = 1. (55a—¢)

The unknown functions /, and /- in egn (54) are bounded in (0, a) and nonzero at s = 0
and s = g. In the penny-shaped crack shown in Fig. 1 physical considerations require that

[ (a4 0) = (ro =] > 0. [wa(r.+ ) (r,—0)] >0, for r—a,

u-(r. 40y =0, w(r. —0) > 0. i[u‘;(r.+())—~n'|(r.7())]~>(), for r—0. (56)
cr

From eqns (54) (56) it then follows that the acceptable roots are
=, n.=.. s =1 7,=0 (57)

In addition to the standard parabolic behavior of the crack opening displacements near the
crack tip r = a. eqns (30). (54) and (57) show that for small values of r we have

) £,00)

TR Wo—w w4 ot r<oa, (58)

.
N 2, u

where w, is the total crack opening at r = 0. Referring to eqn (56) we also have
Fu' —u )y =0 for r =0 and r = a. Thus. the unknown function ¢, defined by eqn (51)
must satistfy the following condition

rg-(rydr = 0. (59)

It should be pointed out that for the interface crack problems in piecewise homo-
geneous materials (where the plane of the crack is a plane of material property disconti-
nuity). the corresponding integral equations are of the second kind, having a Cauchy type
kernel (Erdogan and Gupta. 1971b: Erdogan and Arin. 1972). As a result, the fundamental
solution of the integral equations has complex singularities giving the well-known stress
and displacement oscillations very near the crack tips. The results given in this study leading
to eqns (54) and (57) indicate that the oscillatory behavior of stresses and displacements in
crack problems for nonhomogeneous materials under modes 1 and I1 loading conditions
would disappear if the material properties are continuous and not necessarily differentiable
at and in the immediate vicinity of the crack tip [see also Delale and Erdogan (1988a)].
Furthermore, this result appears to be independent of the crack orientation. For example,
similar results were found in plane strain and antiplane shear problems for a crack per-
pendicular to and terminating at the “kink’ line of the property distribution (Erdogan 1985 ;
Erdogan e al. 1991 : Martin 1992).

In order to avoid convergence difficulties that may be encountered in the numerical
analysis, it 1s worthwhile to examine the Fredholm type kernels given in eqns (52) somewhat
more closely. By observing that
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. (0, a<b,
J JiamJotbp)dp = {l (60)
0 -, a>b,
a
T apathp) R (E(hia), b<a,
g a 2
. 11ap)Jot p'dp - J b b — g (61)
Jo P T - E(ab) — K(a/b), b > a,
La ab
a
—, b<a
*J J (b 2|26 ’
6\ ,,.',(ap,), ',,(,, p)'dp — . (62)
Jo o i 2 b
2a’ =@
[ Jitap)J (bp)dp = H,\(a,b), (63)
j Jotap)dy(bp)dp = Has(a, b). (64)
o

the expressions for m,,. (i, j = 1.2), given by eqn (52) may be written as

§emr S+r

0. s<r] Mr.s)—1 M-I
my(r.s) = ny, S + NALEE

I. s>r.

+2v-sM,(r,8)+7s J ‘ D, (p)pJo(rp)J (sp)dp,

0

o

D -(ppdotrp),(sp) dp,

r
ok s <vr,

my(r.5) = nﬁ]SHll(r~S)nﬂ2J - ‘> _HSJ ' 521(P)PJ1(7P)11(5P)dPa
| 0

5T !
br' § > F [

0, r<s.
} Mar.s)—=1  My(r.s)—1
Y -+ Sl

mys(r.s) = nff,sHo-(r.s)+7s

v

NS—F S+r

i

—2B-rM.(r.5)—Ts J D, (p)pd  (rp)Jo(sp) dp,  (65a—d)

QO
where H,, and H,, are given by eqns (45) and (46) and

Iju(ﬂ) =D (p)— - I Dw:(ﬁ) = Dl2(p)”&’
poopr P
N 5, b - ,
Dy([)):D:l(,D)*/' - ly D::(P)zDzz(P)’&_ﬁz» (66a—d)
g P p
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+ 3 = Ik — 30 / c— Da?
_— (W + )3{~ - (W= T}k — 3} Ch = 7. 5. :(L_)OL (67a d)
4w+1) Sk + 1) 4 (k+1)
From
My~ o d ]
lim =lim My, (i=1.2) (68)
e 2 ds
and
lim [ K =In(4 1)) =0. (69)

1t can now be shown that tfor small values of |s i we have

14

M, (r.5)—- 1 1 Ve s)—1 1
- B w’.ln [s—rl. - X 3rln|.v*r|.

N—F - N “

Hirosy = gdnfs—rl. Horos) = dnls—r. (70a d)

That is, in addition to Cauchy type singularities. the kernels of the integral equations have
logarithmic singularities which are square integrable and hence do not contribute to the
singular behavior of the solution but have to be taken into account in the numerical
analysis.

4. THE SOLUTION OF INTEGRAL EQUATIONS

The closed form solution of the integral cquation (51) is not feasible. However, after
obtaining the correct weight functions [as given by eqns (54) and (57)]. the bounded
unknown functions f, and f- may be determined 10 a desired degree of accuracy by
expanding them into series of appropriate orthogonal polynomials and by regularizing the
singular integral equations. If the interval is normalized by defining v = (2s/a) — 1. from
eqns (54) and (57) it may be seen that the weight functions and the associated orthogonal
polynomials become

1+
() = P, ()
N
1
(1) = P! "y I < v <. (71a.b)
NS
where PP (v), (n = 0.1.. ) are the Jacobi polynomials.
One may also develop an ctficient technique by defining
. - \
gilas = ¢ (X (). XNty = - ¥ = sla, (72)
AR IR
, . : | ,
g-(ay) = PNV (v ). AL .8 =sia, (73)
S =sD)

and by requiring that ¢ (0) = 0, ¢.(0) = 0. The orthogonal polynomials associated with
the weight functions X, and X, are seen to be (Appendix B)
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F(nr+ 1;) cos (n—}—%)(? 3 I“(n+%)

P:z 1201 Z)([) — = — — ,
nl'n COQQ nl/n
"2
o Finet ) T(n+;
PP P = ~cosnfl = — T.(0), (74a,b)
z.\ r nl/n
M+t (ny=T()+T, (1}, t=2"—1=cosb, —1<t<l. (75a,b)

The unknown functions g, and g, may then be expressed as

2;1 s
(]](Ll\ ) = /’ i P ZB“,[,](ZS/— 1),
—5 0

N + ]
2u, | - ,
T galay = e ZBZHT,,(ZS -1, (76a,b)
K+ oS —=sy 0
where B, (i = 1,2,n = 0. 1,...) arc constant coefficients. In this article the weight functions

and poly nomlals given by eqns (76) rather than (71) are used because of the simplicity of
working with Chebyshev polynomials. Thus, by substituting from eqns (76) into the integral
equations (51) and by observing that

| [] [s n@s—Ddy 1 W+T, 0,
[ . T , = PR
LRV ) s —r Tl (1Y) |
U, (0)+U.(x), |x]<1,
U@+, <t
G,(x)+G, 0 (x), x>1,
1)0
N=2r—1, r=ru Ui(x)= gm (’li-) , x| <1, cos@=x,
sinf
G,(x) = y>1, (n=0,1,..)), (78a,b)
the integral equations may be reduced to the following system:
Z F LU B+ F 2By = pitar’),
NAFGAP)B, + Fa ) B, = patar), Fo=rfa, 0<r <], (79a,b)

4

where

Fror) =0, \2r =D+ U2r =1~ W(2r =D +yvir) + Py(r),
Fio oy = —p, V,(:r?— 1)+ Py (),

Fo, oy =B W.2r —1)— p: {r'\'/() ‘”( )}+P7|,(r)

1
Foor) = 2U, (2 =)+ | V(2 —=1) — lj’e’j(r)ﬂlv (r)+ Pyp(r),  (80a—d)

Zr
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and

~l

vix) = J X, (8),(2s - 1) ds.

e,(x) = [ S2X ()0, 28 - 1) ds.

Jo

e,(x) = J sXH() T (25 - 1) ds,

0
Wix) =5V (x)+ 1 ().
™1

V2r—1) = ;[-J In s —r | X () T25" — 1) ds’, (8la—e)

0

1 [ 1
P (r) = - J {am“(as’,ar’)+ 2y In s -1 %X1 (s),(25'—1)ds".
1 1
P, (r)y=- f tams(as’ ar’ )+, Inls =1 Xa(s)T (25" — 1) ds’,
(
Py(ry =~ J famy (as ar’ )=, In v =¥} X, (50,28 —1)ds",
(

1 [ |
Poyoy(r') = - J {amm(as‘.ar')~ 5, In s —7r'] ((‘»,X';(s”)T,v(lv'— 1)ds’. (82a-d)
(

By substituting from eqn (76a) and by using the orthogonality condition for T,, from eqn
(59) we obtain

Bso+3iB:y = 0. (83)

Also, from eqns (72). (73) and (76). it may be seen that the conditions ¢,(0) = 0 and
¢,(0) = 0 become

Y (—1y@n+ 1B, =0. N (~1)"B., =0. (84)

n=0 R

The functional equations (79) may be solved by using a convenient method of weighted
residuals. In this study a simple technique of collocation is used to reduce (79) to a system
of linear algebraic equations (Kantorovitch and Krylov, 1958). In the numerical analysis
the main questions which require careful consideration are the evaluation of the infinite
integrals in the kernels my(r,s), the evaluation of the functions P,(+), (i.j=1.2,
k=0,1,...) given by eqn (83), and the question of the convergence of the series (76). Note
that the integrals in (82) are all of Gauss—Jacobi type and may easily be evaluated by using
the following quadrature formulas:

1 M ; A
h()(1—73)" "' dt » i Yh(r). Ty(r)=0. 1 =cos (= )n .
i M 5 ;
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“‘I+T R M 2i— D=
) dr " N4+ h(t). ty(1)=0. 1, =cos <( ) >

=T T o & M+

(i=1.....M). (86

Hence. the accuracy in the evaluation of the tunctions Py ('), (i,j = 1,2,k =0,1,...) could
casily be controlled by adjusting the number of terms in the Gauss—Jacobi sums.

It should be emphasized that the procedure described above i1s formal. To complete
the analysis it is necessary to prove that the sequence of functions g} obtained from egns
(76) by truncation will converge to the exact solutions g,. For this, one has to prove that
the sequences g are minimal or the related infinite system of algebraic equations is regular
(Kantorovich and Krylov, 1958). The question of regularity for the problem under con-
sideration seems to be very involved. For a special case, the proof that as M — o0, g¥ > g
is given by Erdogan and Gupta (1971¢). To obtain the numerical results given in Section
7. M is increased until the repetition of four digits is observed in the calculated stress
intensity factors. The largest number used was M = 16.

5 STRESS INTENSITY FACTORS

From the viewpoint of applications of the results in fracture studies, one of the
important guantities of interest is the strength of the stress singularity at the crack tips
characterized by the stress intensity factors. We note that equations (51) give the stress
components o ..(r. —0) and o,,.(r. —0) outside as well as inside the region (z =0,
} < r < ). Therefore, from eqn (51) one may easily obtain the stress intensity factors in
terms of the unknown functions ¢, and ¢-. The mode I and II stress intensity factors are
defined by

ko=lim 20 —ao, (. 01 ks =1lim /20 —a)a,.(r, —0). (87a,b)

roed

Since the functions

~

1 b2
Sir) = Z m, (.Y g(s)yds, i=1.2 (88)
7

S 1

are bounded in the closed interval 0 < r < «. eqns (51) may be expressed as

.+] Y / §
’\7 g,.(r, —0) = [ 714{1(\)7 —ds+.S,(r).
~H T W (s—AR ()
+l * oy
}\q' = g,-(r, —0) = 1 l R —ds+S,(r), O0<r<oc, (89a,b)
—H Tl (s—r RS (s)
where. referring to egns (72) and (73).
Y(s) = dis a). Pa(s) = py(s/a), (90)
. . a—r\'2
R()y=z:z ""(z—a) . Rin=i s
v
Risy=2""(—a)' ", R:(r)= i\/’r(a—r)

Ri(r)= R, (N, (k=12 (91a—c)
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Consider now the following functions :

i [ l//;\(j"
W) = ¢,,, v k=12, 92
w2 2 Te (A\‘—:)RA(A\)d\ 92)

o

where the contour C encircles the crack and : is outside C. By shrinking the contour to the
cut, from eqns (89)—(92) we obtain

K+ .

3 O 0 = S 0.

<ty

41

T i —0) = WL ()4 S0, (93a,b)

On the other hand, following Muskhelishvili (1953). from eqn (92) it may be shown that

L Vi)
V()= =— —P(z). (=1.2). 94
R (94)
where P(z) is the principal part of y,(z), R(z) at .= = « . Thus, from eqns (92) and (94)
we find
K+ wotr) .
2;“,, o,.(r.—0)= — R (1) +P )+ S ),
K1 0 Ya(r) P S-(r) 95a,b
P D € E— + P, N . »
n Golr. —0) R-(r) Ary+ 8. (r (95a,b)

From eqns (87), (90) and (95) it may now be seen that

2w e 2\
kl = l'lI:T(} <}\+l>\ 2((1_1’)!«1! (ry = — (‘K';ﬁl)\/ 2a¢|(1)a
A T 2u N A
ky= — lm} (P\+ l)\ a—ng.n = - (;\+l)\ 2a¢p,(1). (96a,b)

Or, by using eqns {76) the stress intensity factors are found to be
ki = —2aY B, k- = -2y B, (97a,b)
0 (]

For a homogeneous medium (i.e. for x = 0 in eqn (4)) modes I and II crack problems are
uncoupled and the stress intensity factors are given by

Wzmr (‘uh/'-plr(r) ] o 7;777 i rlpz(r) dr

0 2yl ma' o /g2 2
T A0 d = o Jat—r

(98a,b)

In the limiting case of 4 = 0 the crack lies between two dissimilar materials 1 and 3.
The system of singular integral equations (51) would then become
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“ogls) b 1
g:r)+ ‘. ds+ Ki(r.5)g,(s)ds = El’l("),
[ () ] {0 ) l
g, (r)+ (i_(\’ ds + . [ K.(r.s)g,(s)ds = Ep;(r), (99a,b)
where
M (] ish~1 M, (r|, s —1
Koy = ks =t g S Meelish =1 (100a,b)
§F §—r
1 ] s(1—K)— 1—~
H*:H]NV[( + K+ (4 k) J LU= K) (101a.b)

VG0 Fan) T (s (R

For an interface crack in piecewise homogeneous materials the stress intensity factors are
defined by Erdogan and Arin (1972):

ko ik = lim | 2(a- ~)(""'”w 0 o (RO &= log(+ "
i im  2(a—7 2 ) lo.(r.0)+ia, (r,0)]. £=5 og Ty )

(102a,b)

In the special case of 6..(r.0) = —p.. a.-(r.0) = 0.0 < r < a, for example, it may be shown
that (Kassir and Bregman, 1972}

T2 4 ‘
(2+1) 1 {wk} (103a.b)

«
ki+ik, = 2p, ST = ,
Tk [),(\n/) F(g+z}:) € 7 n ot |

6. CRACK OPENING DISPLACEMENTS AND STRAIN ENERGY RELEASE RATE

After determining g, and g, or the coefficients B,, and B,, shown in eqns (76), the
crack opening displacements may be obtained from eqns (36) as follows:

»
(

ware +0r—w (k. —0) = 7J gi(s)ds = -

alk +1)
2u,

( ’ 1 1
X {B“,(H#:sin 2()’)+Z B,,,(,)( le)sm (2n+2)0 + 2—sm2r19 >}
|

1
s (e = 0)— 1wy (. —0)] = -.J sgrds = — & et ){le( sin 20’ + ! sin 46")

I [
}; 20~ - sin(2n+2)8 + ——— sin Qn—2)6" |\, ,
+> B, ,,( sin 2nt 4”+4sm( n+2)6 +4n_4sm (2n—2)8 >} (104a,b)

where

cos V' =-. 0<r<a. (105)
a

Note that w,(r. +0) —u,(r. —0) vanishes for » — 0. This may be seen from eqns (104b) and
(73) by using the condition (55) as follows
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-
i

. ) I . o
lmg [tadr. +0) . (r. -0)] = — lim sg-(s)ds = — lim ir [ sg-(s)ds
[ a0y .,

[

= im = (). (106)

o W Ma o)
In debonding problems trom the stand point of fricture mechanics, the strain energy release
rate 4 is perhaps the most important parameter representing the magnitude of the applied
loads and severity of component geometry. By using the concept of crack closure energy
and the asymptotic behavior of stresses and displacements near the crack tip, 4 may be
expressed as

Tk —+ 1

)(kf(u)+/\'§(u)). (107)
81,

4 =

7. RESULTS AND DISCUSSION

The main results of this study are the stress intensity factors calculated for various
loading conditions as tunctions of the material nonhomogeneity constant o defining the
shear modulus in u(z) = g, exp (22) and A« which is the basic dimensionless length par-
ameter in the problem. Table | shows six different loading conditions used in the calcu-
lations. The table also shows the corresponding modes I and 11 stress intensity factors in a
homogeneous medium containing a penny-shaped crack of radius a obtained from eqns
(98). For the problem under consideration. some normalized stress intensity factors cal-
culated for v = 0.3 are shown in Tables 2 and 3. Note that the results given in these tables
may be used to obtain the stress intensity factors for arbitrary crack surface tractions by
superposition to the extent that the tractions may be approximated by second degree
polynomials in r. In all the results given in this section, the interfacial zone thickness 4, the
material nonhomogeneity parameter x, the variable r and the calculated quantities are
normalized with respect to the crack radius « (Fig. 1) The results for o = 0 shown in Tables
2 and 3 correspond to the stress intensity factors in a homogeneous medium shown in Table
1. It may be observed that as « increases. due to the increase in stiffness of the half space
z > 0, the primary components of the stress intensity factors (i.e. k, due to the external
loads pg, pi. pa. and k- due to ¢.. ¢,. ¢-) tend to decrease (Table 2). The table also shows
that for all six loading conditions given in Table 1. secondary stress intensity factors are
considerably smaller than the corresponding primary ones and, because of the uncoupling
of deformation modes, vanish for 2 = 0. For fixed values of the Poisson’s ratio and xa the
dependence of the stress intensity factors on the thickness ratio /i/a is shown in Table 3.
From p; = pyexp (2h) and xa = constant it follows that for 42 = 0 the medium becomes
homogeneous for which the stress intensity factors ure given in Table 1. These results are
seen to be the imits of the calculated stress intensity factors shown in Table 3 for (hfa) — 0.
However, for fixed /g, in the limiting case of / = 0 the problem becomes one of bonded
dissimilar half spaces containing a penny-shaped interface crack. As h/a approaches zero
k, and k., do not tend to known limits that can be determined from the interface crack
problem. For (4/a) — 0, the quantity which remains continuous is the strain energy release
rate 9 = % (h) where % (/) 1s given by egn (107) and 4(0) is obtained from the solution of
the interface crack problem in bonded dissimilar materials. Some representative sample
results giving the calculated values of % (4) are shown in Fig. 2. The values of 4(0) shown

Table 1. Loading condinons used and the corresponding stress intensity factors for x = 0

pir) <o “pyira) Sptr ) 0 0 0
patr) 0 0 \ 0 i — g, ira) —qga(riay
k ;/m\ a NN VNN ] 0 ) 0 »
k 0 8] 0 TN '3’7'?/\\ a ;.‘13\//”
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Table 2. The variauon of stress intensity tactors with »a for various loading conditions shown

inTable l. 7, =p, a7, = ¢, a.i=0.1.2
a{r.0)=p)y. adir.i=0 v=03 ha=03
xa ki T, k.t kit ket ki k-its
30 09052 ~ {11396 0.6763 —1).0824 0.5532 -0.0542
- 20 0.7946 —0.0813 0.6064 —0.0487 0.5018 -0.0327
1.0 0.7063 —0.035& 0.5470 -0.0217 0.4596 -0.0149
-0.6 0.6764 —0.0204 0.5270 —0.0125 0.4450 —10.0086
0.4 0.6624 —0.0133 0.5176 —0.0081 0.4377 —0.0056
0.2 0.6492 —0.0065 0.5086 —0.0040 0.4309 -0.0028
- 0.1 0.6428 ~0.0022 0.5043 -0.0019 0.4276 —0.0014
0.0 0.6366 0.0 0.5 0.0 0.4244 0.0
0.1 0.6306 0.0021 (.4959 0.0019 (14213 (0.0013
0.2 0.6247 0.0062 04918 0.0038 0.4182 0.0027
0.4 0.6123 0.0121 0.4841 0.0075 0.4123 0.0053
0.6 0.6026 0.0177 0.4766 0.0109 0.4067 0.0077
1.0 0.5824 0.02&4 0.4627 0.0176 0.3966 0.0125
2.0 0.5436 0.0506 0.4343 0.0318 0.3747 0.0230
20 0.5133 0.0684 0.4136 0.0436 0.3576 0.0319
GAr,0)=0. a {r. ) =pric 2 =03, ha=0.3
xd ki 3o koo ki ko Ki7s
- 30 0.0222 0.3503 0.0143 0.4530 0.0102 0.3953
- 2.0 0.0156 0.5325 0.0103 0.4428 0.0074 0.3881
1.0 0.0079 0.5157 0.0053 0.4333 0.0039 0.3814
- 0.6 0.0047 0.5093 0.0032 0.4297 0.0024 0.3788
- 0.4 0.0032 0.5061 0.0021 0.4279 0.0016 0.3775
~0.2 0.0016 0.5030 0.0011 0.4261 0.0007 0.3762
—0.1 0.0007 0.501% 0.0005 0.4253 0.0004 0.3756
0.0 0.0 0.5 0.0 0.4244 0.0 0.3750
0.1 —0.0007 0.4985 - 0.0005 0.4236 - 0.0004 0.3744
0.2 --0.0016 0.4970 =0.0011 0.4227 -0.0008 0.3738
0.4 -0.0031 0.4941 - 0.0021 0.4210 —0.0016 0.3726
0.6 --0.0046 04912 0.0032 0.4194 —(.0024 0.3714
1.0 —0.0076 0.4855 -0.0053 0.4161 —0.0040 0.3690
20 —0.0142 0.4725 -0.0104 0.4086 —0.0079 0.3636
3.0 - 0.0205 0.4610 —0.0149 04018 —-0.0116 0.3587

in Fig. 2 are calculated from the interface crack solution. The figure clearly shows that the
function ¢4 (#) is continuous at # = 0. In the other limiting case of # = x«, the medium
becomes homogeneous having the shear modulus 4. We note that the normalizing strain
energy release rate

N
PR L (108)
8

used in Figs 2 4 1s obtained for a pressurized crack of length 24 in 4 homogeneous medium
under plane strain conditions, whereas the corresponding value for a penny-shaped crack
of radius « is (4/7))%,. both for a unit crack front. Thus, for (h/a) — x. 94/%, would be
expected to approach 4/7° = (0.4053. This trend. too, may be observed in Fig. 2 for all
values of u. ;.

Some sample results showing the dependence of the strain energy release rate 4 as well
as the stress intensity factors &, and 4. on the modulus ratio u,;u, are given in Figs 3 and
4. Note that for g/, = 1 the medium is homogeneous and the corresponding stress intensity
factors are shown in Table 1. In this case, from Table | and eqn (107) the normalized strain
energy release rates for the loading conditions considered in Figs 3 and 4 may be obtained
as (4.7 = 0.4053 and 0.25, respectively. The results for the special case of u;/u, = 1 may
easily be verified from Figs 3 and 4. As w; u, approaches zero, the stiffness of the half space
z > 0 also approaches zero and. consequently. A-. k- and 4 become unbounded. In the
second limiting case of (s u,) — » the problem becomes one of an elastic material (z < 0)
bonded to a rigid half space. Thus. as i, g, increases, as shown by the figures. k. k, and 4
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Table 3. The variation of stress intensity factors with 4 « for various loading conditions shown
in Table |

V= (0.3 Feio 11N
A A I3 A I ks
ha = =
Do d JARN Y [N Poa AN p:a
0.0 06360 ] 0.5000 0 0.4244 0
0.1 0.62% 0.0052 0 494 0.0033 0.419 0.0027
0.2 0.621 0.00%4 0 48% 0.0053 0.415 0.0041
0.3 0.616 0.0110 0.485 0.0071 0.413 0.0051
04 0611° 0.0132 ().482~ 110082 0.4109 0.0059
0.3 0.607Y 0.0149 0.4802 0.0092 (.4093 0.0065
0.6 0).6046 0.0164 0.4783 0.0100 0.4079 0.0070
0.7 06018 0.0177 04767 0.0107 0.4068 0.0074
0.8 0.3993 00186 0.4733 noy2 0.4058 0.0078
0.9 0.3973 0.0193 0.4741 00117 0.4051 0.0081
10 0.5955 0.0201 0.4731 0.0120 0.4044 0.0083
20 (.3%73 (.0226 0.4683 D O13A 0.4012 0.0092
340 (1.982 0.0220 14670 00137 0.4004 0.0094
4.0 ) 3845 0.0232 0.4666 00137 0.4001 0.0094
50 (3842 0.0231 0.466° DRV R 0.4000 0.0094
2 k k & k ks
hou —
fon U Gy g o PN Gg:y g2/ 8
00 0 1.3000 ( 4244 0 0.3750
0.1 0.00)2 0.497 0.001° BERE 0.0014 0.374
02 0.003 0 493 0.0025 422 0.0019 0.373
0.3 (.004 0.494 0.0027 421 0.0021 0.3727
0.4 0.0039 0.4933 ).002% 14201 0.0021 0.3723
0.5 0.0038 0.4926 0.0027 04202 0.0020 0.3719
1.6 0.0036 0.4921 0.0023 4198 0.0018 0.3717
0.7 0.0033 0.4916 0.0023 ih419= 0.0017 0.3715
0.% (L0030 0.49]2 0.0021 04192 0.0015 0.3713
0.9 0.0027 0.4909 00018 0.4190 00014 0.3712
1.0 0.0025 0).4907 0.0017 0418y 0.0013 0.3711
2.0 00013 1}.4899 0.0009 0.4184 0.0007 0.3707
30 0001 ) 4898 0,000~ 14184 0.0005 0.3707
4.0 0.001 ).4898 0.0007 u.4i84 0.0005 0.3707
S0 000t ). 4898 0.0007 14184 0.0005 0.3707

approach certain finite limits. The higures also show that at (uy ) = 1, as expected, the
secondary stress intensity factors change sign. The physical consequence of this may be the
change of sign of the probable crack growth angle ¢, shown in Fig. 5 which is calculated
from (Erdogan and Sih. 1963)

hAosint,+Ahs(dcost, 1) = 00 g, t) > 0. (109)

The figure shows thatf the medium is isotropic with regard to the crack growth resistance
%, the maximum energy release and. as a result further crack growth, would take place in
a direction toward the less stiff material. On the other hand, it 4, = 4.(8), then the crack
growth direction ¢, would be such that 4 ()4 () 1s maximum, %(#) being the energy
release rate for a small radial crack extension in the direction of 6.

In this study. largely to simplify the analysis. the Poison’s ratio v is assumed to be
constant. In an actual nonhomogeneous medium this. of course, is not possible. The
assumption can only be justified it the fracture mechanics parameters of interest, in this
case the stress intensity factors. prove to be rclatively insensitive to variations in the
Poisson’s ratio. To give some 1dea about the influence of the variations in v on the stress
intensity factors. some additional results are given in Table 4. The table shows the nor-
malized stress intensity [actors for various values o'y and for hixed values of i/a and ps/p,.
The external loads used are also shown in the tables. It may be observed that the influence
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Fig. 5. The probable crack growth direction 6, vs yo . for 1o = 0.5 v =03, g,.4r.0) = 0. (a)
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Table 4. The influence of the Poisson’s ratio on the stress intensity factors, loading:
g.(r.0) = (—p,. ~priay. -ptravia r.=0.0<r<a

3 k. k ks k ks

oy, @ Poy @ N P, AN paa

Wi, =122 ha =03

278 -0.459 0.902 0,255 0.714 —0.149

1
0.1 1.316 - 0.466 0.926 0.260 0.731 —0.155
0.2 1.363 - 0.471 0955 0.265 (0.751 —0.159
0.3 1.418 -1.472 0.989 0,267 0.77 —0.164
04 1.487 0,465 1.032 0.264 0.806 —0.168
0.5 1,374 0.436 1.086 0,252 ).845 —0.169
J i, =220 us
0.01 0.445 0.145 0.366 (1094 0.320 0.073
0.1 0.430 0.134 0.369 (0.087 (0.322 0.068
0.2 0.455 0.122 0.371 0079 0.223 0.061
0.3 0.459 0.108 0.372 0.069 0.324 0.054
04 0.460 0.084 0.372 0036 0.323 0.043
0.5 0.436 0.056 0.367 0039 0.31% 0.029

of the Poisson’s ratio on the stress intensity factors does not seem to be very significant.
The exception appears to be the case of relatively large negative values of xa or very small
values of u,/y, in cracks under mode I loading.

An example showing the relative crack openig in = direction. wi —w, 1s given in Fig.
6 where the normalization factor w, is the maximum relative crack surtace displacement
for the corresponding pressurized plane strain crack in a homogeneous medium. Note that
for (us/p;) = 1 the displacement amplitudes for the axisymmetric and plane strain cracks
differ by a factor ot (2 7) = 0.6366. The results shown in Fig. 6 are calculated from eqn
(104a).

The results given in this article and the more extensive results given by Ozturk and
Erdogan (1994) show the effect of composition grading and the thickness of the interfacial
zones on certain fracture mechanics parameters. Thev can be used by material scientists as
an additional screening tool in optimizing the material design. They can also be used by
design and maintenance engineers in modeling the subcritical crack growth process needed
for service life estimates.
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Ww(r)
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Fig. 6 z-Component of the normalived crack opening displacement, W = (w,—w )/wy,
wo = (14 wppa 20y =03 ha =04 0,0r.0) = —pua.r,0) =0.0<r < a
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APPENDIN A

Expressions for various tunctions that appear im Sectior 3
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APPENDIX B

B.1. Derivation of 1, (x}
By letting x = —1 2, ff = - 1.2 in the tollowing recurrence relation for Jacobi polynomials (Abramowitz and
Stegun. 1972)

= 24 B2+ 10 0P ) =+ S DPE () + (n+ DPER () (B1)

we find
s . n+ 1 S,

(L —x)P!, ) e e PO T, (B2)

n+5

From

[ (n+ {)

P (V) = —T7,(x) (B3)

Al wm

and eqn (B2) 1t tollows that

o Lin-"y n+1 Dn+3)
(I=uvP, "0 ST~ Wl w1 (X),
4 v
N i¢ B (n+l).\/n
ltn-"1
Sy - T, ) (B4)
n'y
Observing that v = ¢os ) and

Toxy =T, 1 (x) = cosnth = cosin~ 1) = 2cos (0:2) cos (n+1;2)0, (B5)

from eqn (B4) we obtain
. L= cosint 1 200 Flntd)
Pyt = = ’(}h))‘:"~ 22,0, (B6)
cos(t 2 /
nyom n/n
Iy T, ()
A e C— B7
I+ (87)
B.2. Some usetul integrals incolving Chebysher polviomils
N : (2nt ] in(2n+2)0 =1
i sin(2nf) - - ——=sin(2n+2)0. n= 1.
; Qs hide < Wm+27 (B8)
oV * { jxln(ZHL n=20,
Mo I fsinCn e Ssin2n
sT ol 2 - D ds = < - N
o N 1—s 16 2n 4 2n -2
Ssin (2t 10sm2a+ 230 Ssin(2n+4)0  sin(2n+6)6
: lmtca i Ssm@nt i sin2n=-600] o 50 g
n 242 2n+4 2n+6
Sim < .
Ty ( ;-0 )f Ceos Usinf b cosT fisin 04 ccosOsinfl}, n=0 10

s n=1 (B11)
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where
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1 ysin (2nth
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